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appropriately described as an optomechanical polariton whose deco-
herence time exceeds the period of the Rabi oscillations between light
and mechanics. Although the ground state has recently been reported
with optical cooling10, in that work Vc was much smaller than k. In
contrast, the present system achieves a coupling rate exceeding both
the optical and mechanical decoherence rates, thereby satisfying the
necessary conditions for full control of the quantum state of a mech-
anical oscillator with optical fields9,12–14,21,22. The experimental setting
is a micro-optomechanical system in the form of a spoke-anchored
toroidal optical microcavity24. Such devices exhibit whispering gallery
mode resonances of high quality factor (with a typical cavity decay rate
k/2p, 10 MHz) coupled to mechanical radial breathing modes via
radiation pressure25. The vacuum optomechanical coupling rate
g0 5 (vc/R)xZPM can be increased by reducing the radius R of the
cavity (here vc is the optical cavity resonance frequency and xZPM is
the zero point motion). However, the larger per photon force Bvc/R is
then usually partially compensated by the increase in the mechanical
resonance frequency Vm—and correspondingly smaller zero point
motion, given by xZPM~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B= 2meff Vmð Þ

p
(where meff is the effective

oscillator mass). Moreover, small structures also generally feature lar-
ger dissipation through clamping losses. To compensate these oppos-
ing effects, we use an optimized spoke-anchor design (see Fig. 1 and
Supplementary Information) that maintains low clamping losses and a
moderate mechanical resonance frequency while reducing the dimen-
sions of the structure. Devices fabricated in this manner (with
R 5 15mm) exhibited coupling rates as high as g0 5 2p3 3.4 kHz for
a resonance frequency of 78 MHz and a critically coupled sideband
factor Vm/k 5 11.

To reduce the mechanical decoherence rate c<Cm!nm, the micro-
cavity is embedded in a 3He cryostat (minimum temperature
Tmin 5 650 mK)26. A continuous-wave Ti:sapphire laser beam, whose
phase and amplitude quadrature noises are quantum-limited for the
Fourier frequencies of interest, is coupled to the microcavity using a
tapered optical fibre. The weak mechanical displacement fluctuations
are recorded by measuring the phase fluctuations imprinted on the
field emerging from the cryostat using balanced homodyne detec-
tion. Whereas the coherent coupling rate Vc can be determined un-
ambiguously by probing the coherent response of the system27, the
mechanical decoherence rate is affected in a non-trivial way by the
light-absorption-dependent sample temperature and the mechanical
mode’s coupling to its environment, which is dominated by two-level
fluctuators at cryogenic temperatures23,26. In order to systematically
assess the aforementioned effects on the decoherence rate, the coupling
laser’s frequency vl 5 vc 1 D (where D denotes the laser detuning) is
varied in the vicinity of the lower mechanical sideband, while keeping

the launched power constant. This allows the displaced cavity mode â
(of frequency jDj) to be brought in and out of resonance with the
mechanical mode b̂ (of frequency Vm). For each detuning point, we
acquire the coherent response of the system to an optical excitation of
swept frequency vl 1 Vmod in a first step (Vmod is the frequency dif-
ference from the coupling laser). These spectra (Fig. 2a) allow us to
determine all parameters of the model characterizing the optomecha-
nical interaction (Supplementary Information). For large detunings
jDj. Vm, they essentially feature a Lorentzian response of width k
and centre frequency jDj. The sharp dip at Vmod < Vm originates from
optomechanically induced transparency27 (OMIT), and for Vm 5 –D,
its width is approximately V2

c

"
k. The coupling rate, as derived from a

fit of the coherent response for a laser power of 0.56 mW, is
Vc 5 2p3 (3.7 6 0.05) MHz (corresponding to an intracavity photon
number of !nc~3|105).

Additionally, for each value of the detuning, the noise spectrum of
the homodyne signal is recorded in the absence of any external excita-
tion (Fig. 2b). The observed peak represents the phase fluctuations
imprinted on the transmitted light by the mechanical mode’s thermal
motion. The constant noise background on these spectra is the shot-
noise level for the (constant) laser power used throughout the laser
sweep (see Supplementary Information for details). Importantly, the
amplitude of the peak is determined by the coupling to and the tem-
perature of the environment, and therefore allows us to extract the
mechanical decoherence rate. All parameters now having been measured,
it is moreover possible to retrieve the mechanical displacement spec-
trum (Fig. 2c inset). As can be seen, for detunings close to the sideband,
when the (displaced) optical and mechanical modes are degenerate, the
fluctuations are strongly reduced. This effect of optomechanical
resolved sideband cooling28 can be understood in a simple picture: in
the regime Vc=k, the optical decay is faster than the swapping
between the vacuum in the displaced optical field and the thermal state
in the mechanical oscillator. In this case, the mechanical oscillator is
coupled to an effective optical bath at near-zero thermal occupancy
!nmin with the rate Ccool~V2

c

"
k. Ideally, !nmin~k2"16V2

m=1 is
governed by non-resonant Stokes terms â{b̂{zâb̂ neglected in the
Hamiltonian (equation (1))18,19.

Evaluating the mechanical decoherence rate for D 5 –Vm at a cryostat
set point of 0.65 K, we find c 5 2p3 (2.2 6 0.2) MHz—significantly
smaller than Vc. Simultaneously, the average occupancy of the mech-
anical mode is reduced to !n~1:7+0:1 (corresponding to 37 6 4%
ground state occupation), which is limited by the onset of normal mode
splitting. Indeed, as Vc approaches k, the thermal fluctuations are only
partially dissipated into the optical bath, and are partially written back
onto the mechanics after one Rabi cycle.
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Figure 1 | Optomechanical microresonators. a, False-colour scanning
electron micrograph of a spoke-anchored toroidal resonator 31mm in diameter
used for the optomechanical experiments reported in this work. b, Sketch of an
optical whispering gallery mode in the microresonator (colours indicate optical
phase). c, Simulated displacement (exaggerated for clarity) of the fundamental
radial breathing mode of the structure. d, Equivalent optomechanical Fabry–

Pérot cavity: quantum-coherent coupling is achieved when the enhanced
coupling rate Vc is comparable to or exceeds the optical and mechanical
decoherence rates k,Cm!nmð Þ. Owing to the large asymmetry between
mechanical and optical frequencies, the occupancies of the two environments
are widely different.
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swaths of differently textured sea-floor fabric to
the east and west of the lineament (Fig. 3). The
geometry of the two features suggests that they
form a pair of an extinct ridge (on the African
side) and a pseudofault (on the South American
side), created by a northward ridge propagation
episode between ~100 and 83 Ma. An absolute
hot spot–based plate reconstruction using the
rotation parameters from O’Neill et al. (10) in-
dicates that the Cardno hot spot (Fig. 3) may
have been situated not far north of the northern
tip of the ridge propagator, where it abuts the
Bodo Verde Fracture Zone; this is where the
propagator came to a halt. These observations
conform with the inference that ridges have a
tendency to propagate toward hot spots/plumes
and that propagation events and resulting spread-
ing asymmetries are frequently contained within
individual spreading corridors bounded by FZs
(11). The existence of major previously unknown
ridge propagation events will also be relevant for
interpretingmarinemagnetic anomaly sequences
during the Cretaceous Normal Superchron on
conjugate ridge flanks (12).
One of the most important uses of this new

marine gravity field will be to improve the esti-
mates of sea-floor depth in the 80% of the oceans
having no depth soundings. The most accurate
method of mapping sea-floor depth uses a mul-
tibeam echosounder mounted on a large research
vessel. However, even after 40 years of mapping
by hundreds of ships, one finds that more than
50% of the ocean floor is more than 10 km away
from a depth measurement. Between the sound-
ings, the sea-floor depth is estimated frommarine
gravity measurements from satellite altimetry
(13). This method works best on sea floor where
sediments are thin, resulting in a high correla-
tion between sea-floor topography and gravity
anomalies in the 12-km–to–160-km wavelength
band. The shorter wavelengths are attenuated
because of Newton’s inverse square law, whereas
the longer wavelengths are partially cancelled by
the gravity anomalies caused by the isostatic
topography on the Moho (13). The abyssal hill
fabric created during the sea-floor spreading
process has characteristic wavelengths of 2 to
12 km, so it is now becoming visible in the ver-
tical gravity gradient (VGG) models, especially
on the flanks of the slower-spreading ridges
(14). Additionally, seamounts between 1 and 2 km
tall, which were not apparent in the older gravity
models, are becoming visible in the new data.
As CryoSat-2 continues to map the ocean sur-
face topography, the noise in the global marine
gravity field will decrease. Additional analysis
of the existing data, combined with this steady
decrease in noise, will enable dramatic improve-
ments in our understanding of deep ocean tec-
tonic processes.
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Chiral nanophotonic waveguide
interface based on spin-orbit
interaction of light
Jan Petersen, Jürgen Volz,* Arno Rauschenbeutel*

Controlling the flow of light with nanophotonic waveguides has the potential of
transforming integrated information processing. Because of the strong transverse
confinement of the guided photons, their internal spin and their orbital angular
momentum get coupled. Using this spin-orbit interaction of light, we break the mirror
symmetry of the scattering of light with a gold nanoparticle on the surface of a
nanophotonic waveguide and realize a chiral waveguide coupler in which the handedness
of the incident light determines the propagation direction in the waveguide. We control
the directionality of the scattering process and can direct up to 94% of the incoupled
light into a given direction. Our approach allows for the control and manipulation of
light in optical waveguides and new designs of optical sensors.

T
he development of integrated electronic cir-
cuits laid the foundations for the informa-
tion age, which fundamentally changed
modern society. During the past decades,
a transition from electronic to photonic in-

formation transfer took place, and nowadays,
nanophotonic circuits and waveguides promise
to partially replace their electronic counterparts
and to enable radically new functionalities (1–3).
The strong confinement of light provided by such
waveguides leads to large intensity gradients on
thewavelength scale. In this strongly nonparaxial
regime, spin and orbital angular momentum of

light are no longer independent physical quan-
tities but are coupled (4, 5). In particular, the spin
depends on the position in the transverse plane
and on the propagation direction of light in the
waveguide—an effect referred to as spin-orbit in-
teraction of light (SOI). This effect holds great
promises for the investigation of a large range of
physical phenomena such as the spin-Hall effect
(6, 7) and extraordinary momentum states (8)
and has been observed for freely propagating light
fields (9, 10) in the case of total internal reflection
(11, 12), in plasmonic systems (13–15), and for
radio frequency waves in metamaterials (16). Re-
cently, it has been demonstrated in a cavity-
quantum electrodynamics setup in which SOI
fundamentally modifies the coupling between a
single atom and the resonator field (17).
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having no depth soundings. The most accurate
method of mapping sea-floor depth uses a mul-
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vessel. However, even after 40 years of mapping
by hundreds of ships, one finds that more than
50% of the ocean floor is more than 10 km away
from a depth measurement. Between the sound-
ings, the sea-floor depth is estimated frommarine
gravity measurements from satellite altimetry
(13). This method works best on sea floor where
sediments are thin, resulting in a high correla-
tion between sea-floor topography and gravity
anomalies in the 12-km–to–160-km wavelength
band. The shorter wavelengths are attenuated
because of Newton’s inverse square law, whereas
the longer wavelengths are partially cancelled by
the gravity anomalies caused by the isostatic
topography on the Moho (13). The abyssal hill
fabric created during the sea-floor spreading
process has characteristic wavelengths of 2 to
12 km, so it is now becoming visible in the ver-
tical gravity gradient (VGG) models, especially
on the flanks of the slower-spreading ridges
(14). Additionally, seamounts between 1 and 2 km
tall, which were not apparent in the older gravity
models, are becoming visible in the new data.
As CryoSat-2 continues to map the ocean sur-
face topography, the noise in the global marine
gravity field will decrease. Additional analysis
of the existing data, combined with this steady
decrease in noise, will enable dramatic improve-
ments in our understanding of deep ocean tec-
tonic processes.

REFERENCES AND NOTES

1. J. T. Wilson, Nature 207, 343–347 (1965).
2. S. Cande, J. LaBrecque, W. Haxby, J. Geophys. Res. Solid Earth

93, 13479–13492 (1988).
3. C. Heine, J. Zoethout, R. D. Müller, Solid Earth 4, 215–253

(2013).
4. L. A. Lawver, L. M. Gahagan, I. W. Dalziel, Mem. Natl. Inst. Polar

Res. 53, 214–229 (1998).

5. M. S. Steckler, A. B. Watts, Earth Planet. Sci. Lett. 41, 1–13
(1978).

6. C. S. Liu, D. T. Sandwell, J. R. Curray, J. Geophys. Res. 87,
7673–7686 (1982).

7. K. Matthews, R. D. Müller, P. Wessel, J. M. Whittaker,
J. Geophys. Res. Solid Earth 116, 1–28 (2011).

8. Materials and methods are available as supplementary
materials on Science Online.

9. J. Pindell, L. Kennen, in The Geology and Evolution of the
Region Between North and South America, K. James,
M. A. Lorente, J. Pindell, Eds. (Special Publication, Geological
Society of London, London, 2009), vol. 328, pp. 1–55.

10. C. O'Neill, R. D. Müller, B. Steinberger, Geochem. Geophys.
Geosyst. 6, Q04003 (2005).

11. R. D. Müller, W. R. Roest, J. Y. Royer, Nature 396, 455–459
(1998).

12. R. Granot, J. Dyment, Y. Gallet, Nat. Geosci. 5, 220–223
(2012).

13. W. H. F. Smith, D. T. Sandwell, Science 277, 1956–1962
(1997).

14. J. A. Goff, W. H. F. Smith, K. A. Marks, Oceanography 17, 24–37
(2004).

15. N. K. Pavlis, S. A. Holmes, S. C. Kenyon, J. K. Factor,
J. Geophys. Res. 117, B04406 (2012).

16. M. Seton et al., Earth Sci. Rev. 113, 212–270 (2012).
17. W. Mohriak, M. Nóbrega, M. Odegard, B. Gomes, W. Dickson,

Petrol. Geosci. 16, 231–245 (2010).
18. I. Scotchman, G. Gilchrist, N. Kusznir, A. Roberts, R. Fletcher, in

The Breakup of the South Atlantic Ocean: Formation of Failed
Spreading Axes and Blocks of Thinned Continental Crust in the

Santos Basin, Brazil and Its Consequences For Petroleum
System Development (Petroleum Geology Conference Series,
Geological Society of London, London, 2010), pp. 855–866.

19. W. U. Mohriak, P. Szatmari, S. Anjos, Geol. Soc. London Spec.
Publ. 363, 131–158 (2012).

ACKNOWLEDGMENTS

The CryoSat-2 data were provided by the European Space Agency,
and NASA/Centre National d"Etudes Spatiales provided data
from the Jason-1 altimeter. This research was supported by
NSF (grant OCE-1128801), the Office of Naval Research (grant
N00014-12-1-0111), the National Geospatial Intelligence Agency
(grant HM0177-13-1-0008), the Australian Research Council
(grant FL099224), and ConocoPhillips. Version 23 of global grids
of the gravity anomalies and VGG can be downloaded from the
supplementary materials and also at the following FTP site: ftp://
topex.ucsd.edu/pub/global_grav_1min. The manuscript contents
are the opinions of the authors, and the participation of W.H.F.S.
should not be construed as indicating that the contents of the
paper are a statement of official policy, decision, or position on
behalf of NOAA or the U.S. government.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/346/6205/65/suppl/DC1
Supplementary Text
Figs. S1 and S2
References (20–33)

2 July 2014; accepted 2 September 2014
10.1126/science.1258213

NANOPHOTONICS

Chiral nanophotonic waveguide
interface based on spin-orbit
interaction of light
Jan Petersen, Jürgen Volz,* Arno Rauschenbeutel*

Controlling the flow of light with nanophotonic waveguides has the potential of
transforming integrated information processing. Because of the strong transverse
confinement of the guided photons, their internal spin and their orbital angular
momentum get coupled. Using this spin-orbit interaction of light, we break the mirror
symmetry of the scattering of light with a gold nanoparticle on the surface of a
nanophotonic waveguide and realize a chiral waveguide coupler in which the handedness
of the incident light determines the propagation direction in the waveguide. We control
the directionality of the scattering process and can direct up to 94% of the incoupled
light into a given direction. Our approach allows for the control and manipulation of
light in optical waveguides and new designs of optical sensors.

T
he development of integrated electronic cir-
cuits laid the foundations for the informa-
tion age, which fundamentally changed
modern society. During the past decades,
a transition from electronic to photonic in-

formation transfer took place, and nowadays,
nanophotonic circuits and waveguides promise
to partially replace their electronic counterparts
and to enable radically new functionalities (1–3).
The strong confinement of light provided by such
waveguides leads to large intensity gradients on
thewavelength scale. In this strongly nonparaxial
regime, spin and orbital angular momentum of

light are no longer independent physical quan-
tities but are coupled (4, 5). In particular, the spin
depends on the position in the transverse plane
and on the propagation direction of light in the
waveguide—an effect referred to as spin-orbit in-
teraction of light (SOI). This effect holds great
promises for the investigation of a large range of
physical phenomena such as the spin-Hall effect
(6, 7) and extraordinary momentum states (8)
and has been observed for freely propagating light
fields (9, 10) in the case of total internal reflection
(11, 12), in plasmonic systems (13–15), and for
radio frequency waves in metamaterials (16). Re-
cently, it has been demonstrated in a cavity-
quantum electrodynamics setup in which SOI
fundamentally modifies the coupling between a
single atom and the resonator field (17).

SCIENCE sciencemag.org 3 OCTOBER 2014 • VOL 346 ISSUE 6205 67

RESEARCH | REPORTS

Vienna Center for Quantum Science and Technology, TU
Wien–Atominstitut, Stadionallee 2, 1020 Vienna, Austria.
*Corresponding author. E-mail: jvolz@ati.ac.at (J.V.); arno.
rauschenbeutel@ati.ac.at (A.R.)

swaths of differently textured sea-floor fabric to
the east and west of the lineament (Fig. 3). The
geometry of the two features suggests that they
form a pair of an extinct ridge (on the African
side) and a pseudofault (on the South American
side), created by a northward ridge propagation
episode between ~100 and 83 Ma. An absolute
hot spot–based plate reconstruction using the
rotation parameters from O’Neill et al. (10) in-
dicates that the Cardno hot spot (Fig. 3) may
have been situated not far north of the northern
tip of the ridge propagator, where it abuts the
Bodo Verde Fracture Zone; this is where the
propagator came to a halt. These observations
conform with the inference that ridges have a
tendency to propagate toward hot spots/plumes
and that propagation events and resulting spread-
ing asymmetries are frequently contained within
individual spreading corridors bounded by FZs
(11). The existence of major previously unknown
ridge propagation events will also be relevant for
interpretingmarinemagnetic anomaly sequences
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mates of sea-floor depth in the 80% of the oceans
having no depth soundings. The most accurate
method of mapping sea-floor depth uses a mul-
tibeam echosounder mounted on a large research
vessel. However, even after 40 years of mapping
by hundreds of ships, one finds that more than
50% of the ocean floor is more than 10 km away
from a depth measurement. Between the sound-
ings, the sea-floor depth is estimated frommarine
gravity measurements from satellite altimetry
(13). This method works best on sea floor where
sediments are thin, resulting in a high correla-
tion between sea-floor topography and gravity
anomalies in the 12-km–to–160-km wavelength
band. The shorter wavelengths are attenuated
because of Newton’s inverse square law, whereas
the longer wavelengths are partially cancelled by
the gravity anomalies caused by the isostatic
topography on the Moho (13). The abyssal hill
fabric created during the sea-floor spreading
process has characteristic wavelengths of 2 to
12 km, so it is now becoming visible in the ver-
tical gravity gradient (VGG) models, especially
on the flanks of the slower-spreading ridges
(14). Additionally, seamounts between 1 and 2 km
tall, which were not apparent in the older gravity
models, are becoming visible in the new data.
As CryoSat-2 continues to map the ocean sur-
face topography, the noise in the global marine
gravity field will decrease. Additional analysis
of the existing data, combined with this steady
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ments in our understanding of deep ocean tec-
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NANOPHOTONICS

Chiral nanophotonic waveguide
interface based on spin-orbit
interaction of light
Jan Petersen, Jürgen Volz,* Arno Rauschenbeutel*

Controlling the flow of light with nanophotonic waveguides has the potential of
transforming integrated information processing. Because of the strong transverse
confinement of the guided photons, their internal spin and their orbital angular
momentum get coupled. Using this spin-orbit interaction of light, we break the mirror
symmetry of the scattering of light with a gold nanoparticle on the surface of a
nanophotonic waveguide and realize a chiral waveguide coupler in which the handedness
of the incident light determines the propagation direction in the waveguide. We control
the directionality of the scattering process and can direct up to 94% of the incoupled
light into a given direction. Our approach allows for the control and manipulation of
light in optical waveguides and new designs of optical sensors.

T
he development of integrated electronic cir-
cuits laid the foundations for the informa-
tion age, which fundamentally changed
modern society. During the past decades,
a transition from electronic to photonic in-

formation transfer took place, and nowadays,
nanophotonic circuits and waveguides promise
to partially replace their electronic counterparts
and to enable radically new functionalities (1–3).
The strong confinement of light provided by such
waveguides leads to large intensity gradients on
thewavelength scale. In this strongly nonparaxial
regime, spin and orbital angular momentum of

light are no longer independent physical quan-
tities but are coupled (4, 5). In particular, the spin
depends on the position in the transverse plane
and on the propagation direction of light in the
waveguide—an effect referred to as spin-orbit in-
teraction of light (SOI). This effect holds great
promises for the investigation of a large range of
physical phenomena such as the spin-Hall effect
(6, 7) and extraordinary momentum states (8)
and has been observed for freely propagating light
fields (9, 10) in the case of total internal reflection
(11, 12), in plasmonic systems (13–15), and for
radio frequency waves in metamaterials (16). Re-
cently, it has been demonstrated in a cavity-
quantum electrodynamics setup in which SOI
fundamentally modifies the coupling between a
single atom and the resonator field (17).
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Coherence Properties of Nanofiber-Trapped Cesium Atoms

D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, and A. Rauschenbeutel*

Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
(Received 27 March 2013; published 13 June 2013)

We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based

two-color dipole trap, localized !200 nm away from the fiber surface. Using microwave radiation

to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer

a reversible dephasing time of T"
2 ¼ 0:6 ms and an irreversible dephasing time of T0

2 ¼ 3:7 ms. By
modeling the signals, we find that, for our experimental parameters, T"

2 and T0
2 are limited by the finite

initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a

fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an

optical fiber quantum network.

DOI: 10.1103/PhysRevLett.110.243603 PACS numbers: 42.50.Ct, 37.10.Gh, 37.10.Jk, 42.50.Ex

Over the past years, hybrid quantum systems have
attracted considerable attention [1]. In the specific case
of light-matter quantum interfaces [2–4], they combine
the advantages of photons for transmitting quantum infor-
mation and of long-coherence-time systems, such as
dopant ions in crystals, nitrogen vacancy centers, quantum
dots, single trapped neutral atoms and ions, and atomic
ensembles, for storing and processing quantum informa-
tion and for realizing long-distance quantum communica-
tion [5]. In the context of quantum networks [6], it would
be highly desirable to connect these matter-based storage
and processing units via optical fiber links. A promising
approach towards the realization of such fiber-based quan-
tum interfaces consists in coupling cold neutral atoms to
photonic crystal fibers [7–9]. Another technique with high
potential involves trapping and interfacing cold atoms in
the evanescent field surrounding optical nanofibers. By
using the optical dipole force exerted by a blue- and a
red-detuned nanofiber-guided light field [10,11], two-color
traps have been demonstrated experimentally with laser-
cooled cesium atoms [12,13].

In order to implement quantum protocols with atoms
coupled to nanophotonic devices, good coherence proper-
ties are a prerequisite but cannot be taken for granted:
Various effects, like Johnson noise [14] or patch potentials
[15], may occur and hamper long coherence times [16].
When coupling to optical near fields, this is all the more
critical because of the small atom-surface distance of
typically a few hundred nanometers. This is more than
one order of magnitude closer to the surface than in, e.g.,
atom chip experiments, where coherence times on the
order of seconds have been observed [17]. Similar coher-
ence times have been obtained in specially designed opti-
cal dipole traps far from surfaces [18]. Here, using Ramsey
interferometry as well as spin-echo techniques, we mea-
sure, to the best of our knowledge for the first time, the
reversible and irreversible dephasing times of atoms that
are trapped and interfaced with an optical near field.

Specifically, we experimentally characterize and model
the ground state coherence of the clock transition of cesium
atoms stored in the nanofiber-based two-color trap realized
in [12]. Remarkably, the inferred coherence times extend
up to milliseconds even though the experiments take place
at a distance where the atom-surface interaction starts to be
significant.
The experimental setup is sketched in Fig. 1(a) and is

described in detail in Refs. [12,19]. Cesium atoms are
trapped in the evanescent field surrounding the nanofiber
waist of a tapered optical fiber. The atoms are located about
200 nm above the nanofiber surface in two diametric one-
dimensional arrays of potential wells, with at most one
atom per trapping site. By using a red-detuned standing
wave and a blue-detuned running wave, localization of the
atoms in the three (radial, azimuthal, and axial) directions
is achieved with trap frequencies of (200, 140, 315) kHz.
In order to drive transitions between the hyperfine ground
states of the trapped atoms, we use a tunable microwave
(MW) field at a frequency of 9.2 GHz. In the following,
we limit our study to the so-called clock transition between
the states jei $ j6S1=2; F ¼ 4; mF ¼ 0i and jgi $ j6S1=2;
F ¼ 3; mF ¼ 0i. This jgi ! jei transition exhibits only a

(a) (b)

FIG. 1 (color online). (a) Sketch of the experimental setup
including the tapered optical fiber, the trapping, probe, and
push-out laser fields, the microwave antenna, and the single-
photon counter (SPCM). (b) End view of the nanofiber display-
ing the orientation of the plane of the quasilinear polarizations of
the blue- and red-detuned trapping fields, the atoms, and the
magnetic offset field.
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Nanofiber-based two-color dipole trap



HE11 Mode: Polarization Properties 
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FIG. 1. Experimental setup. a A single nanoparticle is
deposited on a silica nanofiber and illuminated with a laser
beam that propagates in the negative x-direction. The polar-
ization of the light can be set with a quarter wave plate. The
fiber can be rotated around the z-axis by the angle �, which
amounts to changing the azimuthal position of the particle.
Here, � = 90� corresponds to the case where the nanopar-
ticle is on the top of the fiber. The light scattered into the
nanofiber is detected using single photon counting modules at
each output port (left and right) of the fiber. b The presence
of the nanofiber modifies the intensity distribution of the in-
cident light field. The relative intensity distributions for an
incident field polarized along y- and z-axis are shown. c,d
Scanning electron microscope images of the nanofiber and
the single nanoparticle used in our experiments. From the
images, we determine diameters of 2a = (315± 3) nm for the
fiber and 2r = (90± 3) nm for the nanoparticle.

frequency of the light and c.c. the complex conjugate.
The total power of the light scattered into a given fiber
mode is then given by

Iscat / |d · ✏⇤(r,�)|2 = |↵Eexc · ✏⇤(r,�)|2, (1)

where (r,�) denotes the position of the scatterer in the
nanofiber transverse plane. As a consequence, the emis-
sion rate is directly proportional to the overlap between
the field of the excitation light and the fiber mode at the
particle’s position.

For a single-mode nanofiber, all guided light fields can
be decomposed into the quasi linearly polarized fiber
eigenmodes[15, 16] HE±

11,x and HE±
11,y, where the z-axis

coincides with the nanofiber axis and the ± sign indicates
the propagation direction of the light in the fiber (±z).
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FIG. 2. Spin-orbit coupling in optical nanofibers. a
When the guided light is quasi linearly polarized along the y-
axis, longitudinal polarization components occur. For light
traveling in +z-direction, this leads to nearly circular �

�

(�+) polarization on the top (bottom) of the fiber, see cir-
cular green arrows. For light propagating in �z direction,
�

� and �

+ are interchanged. As a consequence, the spin
angular momentum of the light (yellow arrows) is oriented
perpendicular to the propagation direction and anti-parallel
to the orbital angular momentum (red arrows). b Overlap
between the HE+

11,y mode (HE�
11,y mode) and �

� (�+) polar-

ization. c Overlap between the HE+
11,y mode (HE�

11,y mode)

and �

+ (��) polarization. d Overlap between the HE±
11,y

modes and ⇡ polarization. e-g Same as b-d but for the fiber
modes HE±

11,x. The values are calculated for our experimental
parameters (nanofiber diameter: 2a = 315 nm, optical wave-
length: � = 532 nm) and the fiber mode profile functions are
normalized such that |✏±HE,i(x = y = 0)|2 = 1.

We choose HE±
11,x and HE±

11,y such that their main polar-
ization component points along the x-direction (� = 0�)
and the y-direction (� = 90�), respectively. Figure 2
shows the overlap of the profile functions ✏±HE,x

and ✏±HE,y

of the electric part of the fiber modes (see methods) with
circular �± = (ie

z

± e
y

)/
p
2 and linear ⇡ = e

x

polariza-
tion as a function of the position in the fiber transverse
plane for the parameters used in our experiment, where
we have chosen x as the quantization axis. Here, e

x,y,z

are the unit vectors along the corresponding axes. From
Fig. 2 it is apparent that the local polarization depends
both on the position in the fiber transverse plane and on
the direction of propagation of the mode. This is a clear
signature of spin-orbit coupling of the nanofiber guided
light. We now consider the situation where the particle
is located at the top (� = 90�) of the nanofiber. At this
position, the overlap between the HE+

11,y mode (HE�
11,y

mode) and �

� polarization is maximal (minimal) and
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… with atoms… with quantum dots



‘Chiral' Quantum Optics
→ Many-Body Quantum Physics
• Theory …

T. Ramos, H. Pichler, A.J. Daley, and PZ, PRL 2014 

H. Pichler, T. Ramos, A.J. Daley, PZ, PRA, 2015
T. Ramos, B. Vermersch, P. Hauke, H. Pichler, and PZ, PRA 2016

K. Stannigel, P. Rabl, and PZ. NJP (2012)

B. Vermersch,  T. Ramos, P. Hauke, and PZ, PRA 2016
H. Pichler and PZ, PRL 2016
P.O. Guimond, H. Pichler, A. Rauschenbeutel and PZ, arXiv June 2016
C. Dlaska, B. Vermersch, and PZ, arXiv July 2016

P HaukeT Ramos B VermerschH Pichler

P. Lodahl, A. Rauschenbeutel, PZ et al.,
submitted to Nature Reviews 2016

• Review



‘Chiral' Quantum Optics

∞R∞L

right-moving photonleft-moving photon

open
boundariesfiber

✓ ‘chiral’ atom-light interface:
broken left-right symmetry

∞L 6= ∞R



∞R

right-moving photon

open
boundariesfiber

‘Chiral' Quantum Optics

∞L = 0;∞R

✓ ‘chiral’ atom-light interface:
broken left-right symmetry

‘chirality' ~ open quantum system

• photons never return /  
are never reflected

• carry away entropy



‘Chiral' Photon-Mediated Interactions

open
boundariesfiber

✓ ‘chiral’ interactions

broken left-right symmetry

atoms only talk to atoms on the right



- quantum optics we know
• interactions mediated by photons

H ªæ°
1æ

+
2 +æ+

1æ
°
2✓dipole-dipole interaction

left - right
symmetric

- chiral quantum optics

broken left - right
symmetry

✓unidirectional interaction H ªæ°
1æ

+
2 ?

by integrating out photons

Theory: ‘Cascaded Master equation’ = open quantum system

‘Chiral' Interactions … How to Model?



Quantum Optical Master Equation

open
boundariesfiber

• We integrate the photons out as ‘quantum reservoir’ 
in Born-Markov approximation

• Master equation for reduced dynamics:  
density operator of atoms

Ω̇ =° i

fl
£
Hsys,Ω

§
+LΩ

Theory



1. ‘Bidirectional’ Master Equation

• Master equation: symmetric

≠

open
boundaries

˙Ω = °i [H
sys

+∞sin(k|x
1

°x
2

|)(æ+
1

æ°
2

+æ+
2
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),Ω]

+2∞
X

i , j=1,2

cos(k|xi °x j |)(æ°
i Ωæ

+
j °
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2

{æ+
i æ

°
j ,Ω}).

1D dipole-dipole

collective spontaneous emission

“Dicke" master equation for 1D: D E Chang et al 2012 New J. Phys. 14 063003

≠

driven atoms

Theory



2.’Cascaded’ Master Equation

• Master equation: (purely) unidirectional

Ω̇ =LΩ ¥°i (HeffΩ°ΩH †
eff)+æΩæ

†

Heff = H1 +H2 ° i
∞

2

°
æ+

1æ
°
1 +æ+

2æ
°
2 +2æ+

2æ
°
1
¢

æ=æ°
1 +æ°

2

≠

open
boundaries

• non-Hermitian effective Hamiltonian
Lindblad form

• quantum jump operator: collective
C.W. Gardiner, PRL 1993; 
H. Carmichael, PRL 1993

positions of the atoms does not matter• general case: N atoms, chiral H. Pichler et al., PRA 2015

Theory



Cold Atoms: Volume 2 
The Quantum World of Ultra-Cold Atoms and Light Book I: Foundations of 
Quantum Optics 
By (author): Crispin Gardiner (University of Otago, New Zealand), Peter Zoller (University of Innsbruck, Austria)

Cold Atoms: Volume 4 
The Quantum World of Ultra-Cold Atoms and Light Book II: The Physics of 
Quantum-Optical Devices 
By (author): Crispin Gardiner (University of Otago, New Zealand), Peter Zoller (University of Innsbruck, Austria) 

:

unidirectional coupling

system 1: 
"source"

system 2: 
"driven  
system"

in 1 out 1         ´        in 2 out 2

C.W. Gardiner, PRL 1993; H. Carmichael, PRL 1993

T. Ramos, H. Pichler, A.J. Daley, and PZ, PRL 2014 

H. Pichler, T. Ramos, A.J. Daley, PZ, PRA, 2015
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K. Stannigel, P. Rabl, and PZ. NJP 2012

H. Pichler and PZ, PRL 2016

J.I. Cirac, P. Zoller, H.J. Kimble, H Mabuchi, PRL 1998
N=2:

Theory of Cascaded Quantum Systems

• References
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≠

drive

open
boundaries

✓ ‘chiral’ photon-mediated interactions
✓ laser driving

Driven-dissipative quantum many-body system

✓open quantum system

Our Model System:  
‘Chiral' Many-Body Quantum Optics



Chiral Photonic Quantum Network

chiral = asymmetric coupling of 
             atoms to wave guide

node

channel

input  / output port

Chiral

• why?
-quantum info / non-equilibrium cond mat (quantum phases)

• how? - physical realization
-photons, spin waves, …

• open quantum many body system
-driven-dissipative (quantum optics)



Markovian Quantum Network Theory

many-body  
quantum system

quantum 
reservoir

drive
fiber

in/out

• Dynamics: Master equation

Many body Quantum Optics

validity …

• Steady state:

Born-Markov Approximation



many-body  
quantum system

quantum 
reservoir

drive
fiber

in/out

!

Engineer system-reservoir coupling!

pure & (interesting) entangled state
(dark state of dissipative dynamics)

• Dynamics: Master equation • Steady state:

Many body Quantum Optics

validity …

Markovian Quantum Network Theory



Dark States: Single Particle

• optical pumping

24

Ω̇ = �i [H ,Ω]

+
X

Æ
∞Æ

µ
cÆΩc†
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c†
ÆcÆΩ�Ω
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2

c†
ÆcÆ

∂

• Optical Bloch Equations

quantum jump operator  (nonhermitian)

Ω(t )
t�⇥⇧� |D⌅⇤D|H |D�= E |D�

�Æ cÆ|D⇥= 0

• steady state as a pure “dark state”

conditions pumping into a pure state

pumping into a pure “dark state”

Ω(t )
t�⇥⇧⇧⇧� |g+1⌅⇤g+1|



Dark States: Many Particle

25

qubits or particles on a lattice

quasi-local 
Lindblad 
operators 

c�
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• master equation
quantum jump operator  (nonhermitian)

H |D�= E |D�
�Æ cÆ|D⇥= 0

• desired state as “dark state”

Ω(t )
t�⇥⇧� |D⌅⇤D|

construct a parent 
Liouvilliandesired state Kraus et al., PRA 2008



Examples: Engineered Dissipative Atomic Systems
Topology via dissipation BCS-pairing from dissipation 2

At late times, we can then expand the state around
|BCS�� with the ansatz ⌅ =

Q
q ⌅q, where ⌅q contains

the two momentum modes ±q necessary to describe pair-
ing. Using the projection prescription ⌅q = tr ⌃=q⌅, we
then find the equations of motion for the single pair den-
sity matrices ⌅q in the presence of nonzero mean fields
resulting from a coupling to other momentum modes,
whose values are dictated by the proximity to the final
state. The resulting e⇥ective Hamiltonian is quadratic
and given by

He� = � i⇥
2

X

q,⇧

�
ñ(c†q,⇧cq,⇧ + |⌥q|2cq,⇧c†q,⇧) (2)

+�̃qs⇧c�(q,⇧)cq,⇧ + h.c.
 
= � i

2

X

q,⇧

⇤q�
†
q,⇧�q,⇧,

with s⇤ = �1, s⌅ = 1 and dimensionless ”gap function”
�̃q = �̃⌥q, and where the diagonal and o⇥ diagonal

mean fields evaluate to ñ = |�̃| = 2
R dq

(2⌅)2
|⌃q|2

1+|⌃q|2 ⇤
0.72 on the d-wave state. The e⇥ective Hamiltonian is
diagonalized in the second line, introducing quasiparticle
Lindblad operators

�q,⇧ =
1q

1 + ⌥2
q

(c�q,⇧ + s⇧⌥qc
†
q,�⇧).

In this basis, the resulting master equation reads �t⌅ =
�iHe�⌅+i⌅H†

e�+
P

q,⇧ ⇤q�q,⇧⌅�†
q,⇧. The linearized Lind-

blad operators have analogous properties to quasiparticle
operators familiar from interaction pairing problems: (i)
They annihilate the (unique) steady state �q,⇧|BCS�� =
0; (ii) they obey the Dirac algebra {�q,⇧, �†

q0,⇧0} =
⇥q,q0⇥⇧,⇧0 and zero otherwise [? ]; and (iii) therefore are
related to the original fermions via a canonical transfor-
mation. The imaginary spectrum of the e⇥ective Hamil-
tonian features a ”dissipative pairing gap”

⇤q = ⇤ ñ (1 + ⌥2
q) ⇥ ⇤ ñ.

The dissipative gap implies an exponential approach to
steady state d-wave BCS state for long times. This can
be most easily seen in a quantum trajectory represen-
tation of the master equation, where the time evolu-
tion of the system is described by a stochastic system
wavefunction |⌃(t)� undergoing a time evolution with
non-hermitian Hamiltonian |⌃(t)� = e�iHeff t|⌃(0)�/  . . . 
interrupted with rate ⇤  j⌥|⌃(t)� 2 by quantum jumps
|⌃(t)� ⌅ j⌥|⌃(t)�/  . . . so that ⌅(t) = ⌥|⌃(t)�⌥⌃(t)|�stoch.
We thus see that (i) the BCS state is a ”dark state” of the
dissipative dynamics in the sense that j⌥|BCSN � = 0 im-
plies that there will never be quantum jump, i.e. the state
remains in |BCSN �, and (ii) states near |BCSN � show a
exponential decay according to the dissipative gap. Note
that it is in marked contrast to dissipative preparation of
a non-interacting BEC state in bosonic systems, where
an approach polynomial in time is expected [12].

FIG. 1. (a) Symmetry in the d-wave state, represented by
a single o�site fermion pair exhibiting the characteristic sign
change under spatial rotations. In a d-wave BCS state, this
pair is delocalized over the whole lattice. (b,c) The dissi-
pative pairing mechanism builds on both (b) Pauli blocking
and (c) delocalization via phase locking. (b) Illustration of
the action of Lindblad operators using Pauli blocking for a
Néel state (see text). (c) The d-wave state may be seen as a
delocalization of these pairs away from half filling.

This convergence to a unique pure state is illustrated
in Fig. 2 using numerical simulations for small systems.
In Fig. 2a we show convergence to a pure state via the
entropy of the full density matrix for a small 1D system,
and in Fig. 2b. the fidelity of the BCS state for a small
2D grid as a function of time, computed via the quantum
trajectories method.
Lindblad operators for D-wave states – We now turn

to the construction of the Lindblad operators for the d-
wave BCS state as given in Eq. (1). We will perform this
construction first for an antiferromagnetic Néel state at
half filling, and then generalize to the BCS state. Our
task can be formulated as finding for a given many body
state |d� a set of (non-hermitian) Lindblad operators j⌥
so that it becomes the unique ”dark state”, j⌥|d� = 0
⌃l. Both the Néel and the BCS state have product form,
|d� =

Q
m d†m|vac�. Thus, we note as a su⇤cient dark

state condition [j⌥, d†m] = 0.
There are two antiferromagnetic Néel states at

half filling |N+� =
Q

i⇧A c†i+ex,⇤c
†
i,⌅|vac�, |N�� =

Q
i⇧A c†i+ex,⌅c

†
i,⇤|vac� with A a sublattice in a two-

dimensional bipartite (square) lattice, which di⇥er by
an overall spin flip. Introducing “Néel unit cell op-
erators” Ŝa

i,⇤ = c†i+e�
⇧ac†i , a = ±, e⇤ = {±ex,±ey},

whose usefulness will become apparent soon, the state
can be written in eight di⇥erent forms, |N±� =Q

i⇧A Ŝ±
i,⇤ |vac� = (�1)M/2

Q
i⇧B Ŝ⇥

i,�⇤ |vac�, with M the
lattice size. We then see that the Lindblad operators
must obey [jai,⇤ , Ŝ

b
j,µ] = 0 for all i, j located on the same

sublattice A or B, which is fulfilled for the set

jai,⇤ = c†i+e�
⇧aci, i ⇧ A orB. (3)

d-wave pairing
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Dynamics of spins coupled to a chiral waveguide

• Distance commensurate with 
photon wavelength

• Equal Rabi frequencies and 
staggered detunings

Special case:

Purely dissipative Dicke modelFor

d
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Two-Level Atoms with ‘Chiral' Waveguide Coupling

• Unique, pure steady state:

• Note: only for N even Entanglement by Dissipation

• Quantum Dimers

singlet fraction

product of pure quantum 
spin-dimers

singlet / EPR

entropy carried 
away

open
boundaries



N even: cascaded

• Iterative solution from left to right:     

∞L

≠

K. Stannigel et al. NJP (2012) 29
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Dark manifold

Dark state pumping
No output on the right!

• Iterative solution from left to right:     

N spins? Consider cascaded case first ∞L
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No output on 
the right!

Dark state No input from 
the left

• Iterative solution from left to right:    

N even: cascaded ∞L

31

quantum interference: no light
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No output on 
the right!

Dark state No input from 
the leftNo output on 

the right!

Dark state

• Iterative solution from left to right:     

N even: cascaded ∞L
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• Iterative solution from left to right:     

constant “purification 
speed"

N even: cascaded ∞L
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Last spin cannot pair up, but still 
dimers are formed 

• Iterative solution from left to right:     

N odd: cascaded ∞L
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N even: Chiral waveguide ∞L 6= ∞R

≠

System purifies   
“as a whole"
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N odd: chiral waveguide 

• Odd number of spins?

• Any unpaired spin destroyed the formed dimers: No dark state!

∞L 6= ∞R

≠
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Dynamics of TLS coupled to a chiral waveguide

different classes of multi-partite entanglement. In gen-
eral, the N spins will arrange themselves in N

m

adjacent
multi-mers:

| i =
N

mO
q=1

|M
q

i , (15)

where each multi-mer |M
q

i is the superposition

|M
q

i = a |gi⌦M

q

+

X
j>l

b
jl

|Si
jl

|gi⌦M

q

�2

+

X
j>l>r>s

c
jlrs

|Si
jl

|Si
rs

|gi⌦M

q

�4

+ ..., (16)

presenting multi-partite entanglement. Here we just il-
lustrate some of the “spin cluster” states that can be dis-
sipatively prepared with these chiral spin networks, but
in Sec. ?? we analysize the general conditions in detail.
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Figure 2. Dyanmical purification of chiral networks into dif-
ferent entangled multimer states. (a) dimers with a single
chiral channel (b) quadrumers with a single chiral channel (c)
octumer with two chiral channels (d) Non-local dimers in a
single bidirectional channel. Parameters are...

Comment on Fisher Sec. ?? for a way of witnessing the
entanglement.

III. PURE DARK STEADY STATES OF
CHIRAL SPIN NETWORKS

From a quantum optics point of view, the steady states
of the driven-dissipative dynamics are pure when they
are dark states of the driven-dissipative dynamics. The
scope of this section is to analyze in detail the conditions
under which the steady states of the chiral spin networks
are dark, as well as to establish a physical interpretation

of the underlying mechanisms leading to them. In par-
ticular, we show that the conditions stated in Sec. II B
are sufficient to cool the system in such dark states and
also we solve analytically the dark states for 2,3 and 4
spins, which illustrate the most important physics. We
recall that a pure quantum state | i is a dark state if it
is

(1) annihilated by all jump operators, and

(2) invariant under the coherent part of the dynamics,
i.e. an eigenstate of the Hamiltonian.

In the explicit example of the chiral spin (4) the first
condition reads c

L

| i = c
R

| i = 0, which means that
the systems does not emit photons on both output ports
of the waveguide (hence the term “dark”). The second
conditions is fulfilled if (H

sys

+ H
L

+ H
R

) | i = E | i,
that is if the state is an eigenstate of the total Hamil-
tonian, consisting not only of the system part H

sys

but
also of the bath induced coherent parts H

L

and H
R

. In
general these two conditions can not be satisfied at the
same time, inhibiting the existence of a dark state. To
understand why and when they can be satisfied simulta-
neously it is instructive to first consider the simple ex-
ample of only two spins coupled by a chiral waveguide,
since it contains many of the essential features, and will
serve as a building block to understand larger systems.

A. Two spins coupled by a chiral waveguide

For N = 2 a direct search for dark states is pos-
sible. The dark state condition (1) restricts the dark
states to the nullspaces of c

L

and c
R

. The nullspace
of c

L

is spanned by the trivial state |ggi and the state
1p
2

(|egi � eik(x1

�x

2

) |gei), which does not emit photons
propagating to the left because of destructive interference
of the left-moving photons emitted by the two spins, an
effect well known as sub-radiance [CITE]. However this
sub-radiant state in general decays by emitting photons
propagating to the right. The nullspace of c

R

is spanned
by |ggi and 1p

2

(|egi � e�ik(x

1

�x

2

) |gei). Therefore, in
general only the state |ggi is annihilated by both jump
operators, leaving no room for a nontrivial dark state.
An exception occurs, if the distance of the two spins is
an integer multiple of the wavelength of the photons, that
is k|x

1

� x
2

| = 2n⇡ with n = 0, 1, 2, . . . . Then the two
jump operators coincide c

L

= c
R

(up to an irrelevant
phase), and the common nullspace is spanned by the two
states |ggi and |Si ⌘ 1p

2

(|egi � |gei) [? ]. The so called
singlet state |Si is perfectly sub-radiant with respect to
both, photons propagating to the right and photons prop-
agating to the left. On the other hand the triplet states
|T i ⌘ 1p

2

(|egi+ |gei) and |eei are super-radiant, that is
they decay with 2(�

L

+�
R

) [See Fig. 3 and Fig. 4d)]. We
note that in the perfectly cascaded setup this condition
on the distance of the spins is not required, since then
there is only one jump operator.

purity

time

different classes of multi-partite entanglement. In gen-
eral, the N spins will arrange themselves in N
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adjacent
multi-mers:
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presenting multi-partite entanglement. Here we just il-
lustrate some of the “spin cluster” states that can be dis-
sipatively prepared with these chiral spin networks, but
in Sec. ?? we analysize the general conditions in detail.
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Figure 2. Dyanmical purification of chiral networks into dif-
ferent entangled multimer states. (a) dimers with a single
chiral channel (b) quadrumers with a single chiral channel (c)
octumer with two chiral channels (d) Non-local dimers in a
single bidirectional channel. Parameters are...

Comment on Fisher Sec. ?? for a way of witnessing the
entanglement.

III. PURE DARK STEADY STATES OF
CHIRAL SPIN NETWORKS

From a quantum optics point of view, the steady states
of the driven-dissipative dynamics are pure when they
are dark states of the driven-dissipative dynamics. The
scope of this section is to analyze in detail the conditions
under which the steady states of the chiral spin networks
are dark, as well as to establish a physical interpretation

of the underlying mechanisms leading to them. In par-
ticular, we show that the conditions stated in Sec. II B
are sufficient to cool the system in such dark states and
also we solve analytically the dark states for 2,3 and 4
spins, which illustrate the most important physics. We
recall that a pure quantum state | i is a dark state if it
is

(1) annihilated by all jump operators, and

(2) invariant under the coherent part of the dynamics,
i.e. an eigenstate of the Hamiltonian.

In the explicit example of the chiral spin (4) the first
condition reads c

L

| i = c
R

| i = 0, which means that
the systems does not emit photons on both output ports
of the waveguide (hence the term “dark”). The second
conditions is fulfilled if (H

sys

+ H
L

+ H
R

) | i = E | i,
that is if the state is an eigenstate of the total Hamil-
tonian, consisting not only of the system part H

sys

but
also of the bath induced coherent parts H

L

and H
R

. In
general these two conditions can not be satisfied at the
same time, inhibiting the existence of a dark state. To
understand why and when they can be satisfied simulta-
neously it is instructive to first consider the simple ex-
ample of only two spins coupled by a chiral waveguide,
since it contains many of the essential features, and will
serve as a building block to understand larger systems.

A. Two spins coupled by a chiral waveguide

For N = 2 a direct search for dark states is pos-
sible. The dark state condition (1) restricts the dark
states to the nullspaces of c

L

and c
R

. The nullspace
of c

L

is spanned by the trivial state |ggi and the state
1p
2

(|egi � eik(x1

�x

2

) |gei), which does not emit photons
propagating to the left because of destructive interference
of the left-moving photons emitted by the two spins, an
effect well known as sub-radiance [CITE]. However this
sub-radiant state in general decays by emitting photons
propagating to the right. The nullspace of c

R

is spanned
by |ggi and 1p

2

(|egi � e�ik(x

1

�x

2

) |gei). Therefore, in
general only the state |ggi is annihilated by both jump
operators, leaving no room for a nontrivial dark state.
An exception occurs, if the distance of the two spins is
an integer multiple of the wavelength of the photons, that
is k|x

1

� x
2

| = 2n⇡ with n = 0, 1, 2, . . . . Then the two
jump operators coincide c

L

= c
R

(up to an irrelevant
phase), and the common nullspace is spanned by the two
states |ggi and |Si ⌘ 1p

2

(|egi � |gei) [? ]. The so called
singlet state |Si is perfectly sub-radiant with respect to
both, photons propagating to the right and photons prop-
agating to the left. On the other hand the triplet states
|T i ⌘ 1p

2

(|egi+ |gei) and |eei are super-radiant, that is
they decay with 2(�

L

+�
R

) [See Fig. 3 and Fig. 4d)]. We
note that in the perfectly cascaded setup this condition
on the distance of the spins is not required, since then
there is only one jump operator.

time

State of many-body spin system cools / purifies to a 
pure state of spin dimers, tetramers, hexamers, …
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• Iterative solution from left to right:     

constant “purification 
speed"

N even: cascaded ∞L
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≠

Last spin cannot pair up, but still 
dimers are formed 

• Iterative solution from left to right:     

N odd: cascaded ∞L
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'Chiral' Couplings & 'Chiral' Networks with …

• “photonic" wave-guides

40

• "phononic"

• spin waves [quantum spintronics]

• theory beyond Born-Markov using tDMRG techniques

Other realizations … and more insight?



• Chirality / Photonic Nanostructures

chiral = asymmetric coupling 
of atom to wave guide

photonic wave guide (fiber)…

two-level atom

photon

• Chiral “Spin Wave Guide" …

… spin wave guide

magnonchiral coupling - how?

below: Rydberg atom 
implementation

✓  magnon = ‘hard core’ bosons
✓  quantum optics with spins



• Chirality / Photonic Nanostructures

chiral = asymmetric coupling 
of atom to wave guide

photonic nanostructure…

two-level atom

photon

…

… spin wave guide

magnon

• Chiral “Spin Wave Guide"

chiral coupling - how?

below: all-cold atom 
implementation

lattice

• theory beyond Born-Markov: tDMRG techniques for spin chains



�
dipole-dipole

dipole-dipoleJ

J̃

spin waveguide

• spin waveguide

'Chiral' Quantum Optics with Spin Waveguides

T. Ramos, B. Vermersch, P. Hauke, H. Pichler, and PZ, PRA 2016, Non-Markovian Chiral Networks
B. Vermersch, T. Ramos, P. Hauke, and PZ, PRA 2016, Implementation with Rydberg Atoms and Ion Strings



'Chiral' Couplings with Spin Chains

• spin waveguide

map to bosons

Strong Chirality
= synthetic gauge field

©
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…
no reflection

‘Chiral’ exponential decay into the spin waveguide

chirality



Dimer formation: system + reservoir dynamics
�

chiral case

' = ⇡/6

⌦



Dimer formation: system + reservoir dynamics
�

chiral case

' = ⇡/6

real space momentum

magnons magnons

reservoir 
spins:

system: 
spins

pure quantum dimer
⌦

‘electric field in waveguide' chirality

darkness due to 
quantum interference

⌦
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dimer dimer dimer
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tDMRG + quantum trajectories [beyond Born-Markov]

sink sink

single trajectory

waveguide



tDMRG + quantum trajectories

• Larger reservoirs:  tDMRG

• Sink: wave function trajectories

49

sink sink

single trajectory

Hannes Pichler

Review: Quantum trajectories & open many-body quantum systems, AJ Daley - Advances in Physics, 2014 



'Wiring Up' Quantum Modules:
‘Chiral’ Quantum Circuits with Photons & Spins

‘chiral' quantum channel

(a)

... ...

(c)

input output



'Wiring Up' Quantum Modules:
‘Chiral’ Quantum Circuits with Photons & Spins

QC1 QC2 QC3quantum information flow

‘chiral' quantum channel
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by rewriting the last two lines of Eq. (37) as a sum over the
thermal noise sources:

1
2

∑

n

γ n
mNn

m([["†
n,µ],"n] + ["†

n,[µ,"n]]).

This expression is explicitly in Lindblad form and the jump
operator associated with the thermal noise originating from
node n involves all subsequent qubits according to "n =
λ
2

∑
i!n[T in

11 (ωq)]∗ σ−
i . Here, the matrices T in(ω) describe

propagation from node n to node i (see Appendix B) and
we obtain λ

2T
in

11 ∼
√

&i/γ n
op if the qubits are resonant with the

OM normal modes.

C. State transfer protocol

Up to now, the dynamics of the cascaded qubit network has
been discussed on general grounds. We now turn to a specific
application, namely, the transfer of a quantum state from one
qubit to the next. This has been the topic of our recent work [42]
and we provide here the details of the protocol. The main
problem in transferring a quantum state |ψ0⟩ = α|0⟩ + β|1⟩
between two nodes of a cascaded network according to

|ψ0⟩1|0⟩2 → |0⟩1|ψ0⟩2 (44)

lies in the possibility that the photon emitted by the first node
could pass the second node instead of being reabsorbed [see
Fig. 4(a)]. It was first realized by Cirac et al. [11] in the context
of atomic cavity QED that such photon loss can be avoided

(a)

(b)

(c)

FIG. 4. (Color online) State transfer in a two-node cascaded
quantum network. (a) Schematic illustration of time-symmetric
photon wave packet (see text). (b),(c) Exemplary pulses &i(t) given
in Eqs. (50) and (51), respectively, and resulting occupations |vi |2
obtained numerically. In both cases, the parameters have been
adjusted such that |v1(tf )|2 < 10−2.

by choosing appropriate time-dependent control pulses in the
nodes, which leads to a deterministic state transfer protocol.
In our setting, which is closely related, we can adiabatically
tune the effective qubit-fiber couplings &i(t) as well as the bare
qubit frequencies ωi

q(t). We proceed by first deriving the ideal
pulse shapes needed for the state transfer and then comment
on their realization.

1. Pulse shapes for state transfer

We ignore all imperfections for the moment and base our
derivation on the ideal cascaded ME, as given in Eq. (31)
for N = 2 qubits. Along the lines of Ref. [11] we require
that the system remains in a pure state µ(t) = |ψ(t)⟩⟨ψ(t)|
during the entire evolution, which is equivalent to requiring
the output of the photodetector indicated in Fig. 4(a) to be
exactly zero. It is clear from Eqs. (32) and (33) that this is
the case if we can enforce the so-called dark state condition
S(t)|ψ(t)⟩ = 0 for all times, where the time dependence of the
jump operator is attributed to the time dependence of &i(t).
Under this constraint the evolution of the system is completely
characterized by the Schrödinger equation ∂t |ψ⟩ = −i(Heff +
H0)|ψ⟩, with Heff given in Eq. (33) and H0 =

∑
i ω̃

i
q(t) σ i

z /2
containing the (renormalized) qubit level splittings. We further
reintroduce the phases θi that had been absorbed in Sec. III A
and expand the state vector in terms of three time-dependent
amplitudes u,v1,v2 as follows:

|ψ(t)⟩ = αu(t) ei,+(t) |00⟩ (45)

+β[v1(t) ei,−(t) |10⟩ + v2(t) ei,−(t)+iφ(t) |01⟩].
(46)

Here the phase factors have been introduced for later con-
venience according to ,±(t) = 1

2

∫ t

t0
ds [ω̃2

q(t) ± ω̃1
q(t)] and

φ(t) = arg{J21} = θ2 − θ1. The dark-state conditionS|ψ⟩ = 0
now reads

√
&1v1 +

√
&2v2 = 0 and the Schrödinger equation

amounts to u̇ = 0 and

v̇1 = −&1

2
v1, v̇2 =

[
−&2

2
− iδ(t)

]
v2 −

√
&1&2v1, (47)

where δ(t) = ω̃2
q(t) − ω̃1

q(t) + φ̇(t) is an effective detuning.
We first derive the pulses for δ(t) = 0, which is a generalized
resonance condition taking the varying phase of the cascaded
coupling into account.

Achieving perfect state transfer means that we find time-
dependent &i(t) such that the solution of Eq. (47) satisfies the
dark state condition as well as the boundary conditions

v1(ti) = |v2(tf )| = 1, v1(tf ) = v2(ti) = 0, (48)

where ti and tf are the initial and final times, respectively.
In reality, however, one will have to tolerate slight violations
of these boundary conditions due to finite pulse lengths, etc.
To find suitable pulses we make use of the following time-
symmetry argument [11,55]: If a photon is emitted by the first
qubit, then, upon reversing the direction of time, we would see
a perfect reabsorption. We can exploit this by ensuring that the
emitted photon shape is invariant under time reversal and use
a time-reversed control pulse for the second qubit. As a result,
the absorption process in the second node is a time-reversed
copy of the emission in the first and may thus be—at least in
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by rewriting the last two lines of Eq. (37) as a sum over the
thermal noise sources:
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γ n
mNn

m([["†
n,µ],"n] + ["†

n,[µ,"n]]).

This expression is explicitly in Lindblad form and the jump
operator associated with the thermal noise originating from
node n involves all subsequent qubits according to "n =
λ
2

∑
i!n[T in

11 (ωq)]∗ σ−
i . Here, the matrices T in(ω) describe

propagation from node n to node i (see Appendix B) and
we obtain λ

2T
in

11 ∼
√

&i/γ n
op if the qubits are resonant with the

OM normal modes.

C. State transfer protocol

Up to now, the dynamics of the cascaded qubit network has
been discussed on general grounds. We now turn to a specific
application, namely, the transfer of a quantum state from one
qubit to the next. This has been the topic of our recent work [42]
and we provide here the details of the protocol. The main
problem in transferring a quantum state |ψ0⟩ = α|0⟩ + β|1⟩
between two nodes of a cascaded network according to

|ψ0⟩1|0⟩2 → |0⟩1|ψ0⟩2 (44)

lies in the possibility that the photon emitted by the first node
could pass the second node instead of being reabsorbed [see
Fig. 4(a)]. It was first realized by Cirac et al. [11] in the context
of atomic cavity QED that such photon loss can be avoided

(a)

(b)

(c)

FIG. 4. (Color online) State transfer in a two-node cascaded
quantum network. (a) Schematic illustration of time-symmetric
photon wave packet (see text). (b),(c) Exemplary pulses &i(t) given
in Eqs. (50) and (51), respectively, and resulting occupations |vi |2
obtained numerically. In both cases, the parameters have been
adjusted such that |v1(tf )|2 < 10−2.

by choosing appropriate time-dependent control pulses in the
nodes, which leads to a deterministic state transfer protocol.
In our setting, which is closely related, we can adiabatically
tune the effective qubit-fiber couplings &i(t) as well as the bare
qubit frequencies ωi

q(t). We proceed by first deriving the ideal
pulse shapes needed for the state transfer and then comment
on their realization.

1. Pulse shapes for state transfer

We ignore all imperfections for the moment and base our
derivation on the ideal cascaded ME, as given in Eq. (31)
for N = 2 qubits. Along the lines of Ref. [11] we require
that the system remains in a pure state µ(t) = |ψ(t)⟩⟨ψ(t)|
during the entire evolution, which is equivalent to requiring
the output of the photodetector indicated in Fig. 4(a) to be
exactly zero. It is clear from Eqs. (32) and (33) that this is
the case if we can enforce the so-called dark state condition
S(t)|ψ(t)⟩ = 0 for all times, where the time dependence of the
jump operator is attributed to the time dependence of &i(t).
Under this constraint the evolution of the system is completely
characterized by the Schrödinger equation ∂t |ψ⟩ = −i(Heff +
H0)|ψ⟩, with Heff given in Eq. (33) and H0 =

∑
i ω̃

i
q(t) σ i

z /2
containing the (renormalized) qubit level splittings. We further
reintroduce the phases θi that had been absorbed in Sec. III A
and expand the state vector in terms of three time-dependent
amplitudes u,v1,v2 as follows:

|ψ(t)⟩ = αu(t) ei,+(t) |00⟩ (45)

+β[v1(t) ei,−(t) |10⟩ + v2(t) ei,−(t)+iφ(t) |01⟩].
(46)

Here the phase factors have been introduced for later con-
venience according to ,±(t) = 1

2

∫ t

t0
ds [ω̃2

q(t) ± ω̃1
q(t)] and

φ(t) = arg{J21} = θ2 − θ1. The dark-state conditionS|ψ⟩ = 0
now reads

√
&1v1 +

√
&2v2 = 0 and the Schrödinger equation

amounts to u̇ = 0 and

v̇1 = −&1

2
v1, v̇2 =

[
−&2

2
− iδ(t)

]
v2 −

√
&1&2v1, (47)

where δ(t) = ω̃2
q(t) − ω̃1

q(t) + φ̇(t) is an effective detuning.
We first derive the pulses for δ(t) = 0, which is a generalized
resonance condition taking the varying phase of the cascaded
coupling into account.

Achieving perfect state transfer means that we find time-
dependent &i(t) such that the solution of Eq. (47) satisfies the
dark state condition as well as the boundary conditions

v1(ti) = |v2(tf )| = 1, v1(tf ) = v2(ti) = 0, (48)

where ti and tf are the initial and final times, respectively.
In reality, however, one will have to tolerate slight violations
of these boundary conditions due to finite pulse lengths, etc.
To find suitable pulses we make use of the following time-
symmetry argument [11,55]: If a photon is emitted by the first
qubit, then, upon reversing the direction of time, we would see
a perfect reabsorption. We can exploit this by ensuring that the
emitted photon shape is invariant under time reversal and use
a time-reversed control pulse for the second qubit. As a result,
the absorption process in the second node is a time-reversed
copy of the emission in the first and may thus be—at least in
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Quantum State Transfer in a Spin Chain



(cascaded,no sink)
Quantum State Transfer in a 140 site Spin Chain

(cascaded,no sink)

1st qubit position 2nd qubit position

1st qubit excited
2nd qubit excited

None of them is excited

99.2% fidelity



Wiring up quantum-gadgets
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Time Reversal of a Wave Packet

see also: Time reversal with photons, Mehmet Fatih Yanik and Shanhui Fan, Phys. Rev. Lett. 2004



Time Reversal + Quantum Switch

spin populations
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Photonic Circuits: Quantum Feedback with Delays
• Model 1: two driven atoms with a delay line

• Model 2: driven atom in front of mirror = quantum feedback

≠

So far neglected

≠

H. Pichler, P.Z., PRL 2016
We use tDMRG techniques to solve for the dynamics. AL Grimsmo, PRL Aug 2015 



Quantum Stochastic Schrödinger Equation

• Simplest example: TLS + transmission line (RWA)

≠

inputoutput one way coupling

• System + bath Hamiltonian

6

• interaction part

Hint = i�
ˆ �0+⇥

�0�⇥
d⇥�(⇥)

�
b†(⇥)c� c†b(⇥)

⇥

with c a system operator

Note: For simplicity, we consider here only a single heat bath. Generalization to
many reservoirs represents no conceptual difficulty.

Validity of the Model

The development of quantum noise theory is based on

• The rotating wave approximation with a smooth system-bath coupling;
• The Markov, or white noise, approximation.

Rotating wave approximation:

assume
cI(t) ⇥ eiHsyst/�ce�iHsyst/� != ce�i�0t

where ⇥0 is the resonance frequency of the system

8

system frequency

reservoir bandwidth

Thursday, June 11, 2009

quantum noise operators



Interpretation QSSE: ‘conveyor belt'

≠

time steps
time

stroboscopic map:

(quantum) Ito increment 

quantum 
chicken & egg



Interpretation QSSE

≠

time

atomic wave function for sequence of 
emission events: quantum trajectory

entangled state:

quantum 
chicken & egg



Matrix Product State Representation

• Total state of system & waveguide

• MPS representation

Bond dimension ~ entanglement 

coefficientsvs.

MPS

60

G. Vidal, Phys. Rev. Lett. 91, 147902 (2003). 
J. Daley, C. Kollath, U. Schollwöck, G. Vidal, J. Stat. Mech. (2004) P04005.
S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004)  

‘time bins'

We will use MPS to solve the Quantum Stochastic Schrödinger Equation.



Conclusions

• Chiral Quantum Optics & Quantum Many-Body Physics

61

• Physical realization with atoms / solid state emitters + photons, 
spins, …

≠

dissipative formation of pure quantum dimers

• Theory: dynamics of chiral quantum networks with t-DMRG 
techniques / beyond Markov approximation

• 2D?


