Chiral' Quantum Optics: A Novel Driven-Dissipative Quantum Many-Body System

Peter Zoller

'chiral' photonic quantum circuit / network

unidirectional light-matter couplings appear naturally in nanophotonic devices

UNIVERSITY OF INNSBRUCK

Quantum Simulation & Quantum Optics

- Building Quantum Simulators with AMO, [solid state] etc.
 - cold atoms in optical lattices
 - trapped ions
 - photons ...

controlled many-body quantum systems

✓ dynamics: *closed* & *open* systems
 ✓ preparation & measurement
 ✓ quantum control on level of single quanta

nanomechanics

NV centers

trapped ions

atoms in optical lattices

CQED

'Chiral' Quantum Optics

'Chiral' Quantum Optics

what it is NOT ;-)

Particle in a [synthetic] magnetic field

photonics

ARTICLES PUBLISHED ONLINE: 20 OCTOBER 2013 | DOI: 10.1038/NPHOTON.2013.274

Imaging topological edge states in · silicon photonics

M. Hafezi*, S. Mittal, J. Fan, A. Migdall and J. M. Taylor

PUBLISHED ONLINE: 10 NOVEMBER 2013 | DOI: 10.1038/NMAT3783

Observation of unconventional edge states in 'photonic graphene'

Yonatan Plotnik^{1†}, Mikael C. Rechtsman^{1†}, Daohong Song^{2†}, Matthias Heinrich³, Julia M. Zeuner³, Stefan Nolte³, Yaakov Lumer¹, Natalia Malkova⁴, Jingjun Xu², Alexander Szameit³, Zhigang Chen^{2,4} and Mordechai Segev^{1*}

'Chiral' Quantum Optics

chiral coupling between light and quantum emitters

Nanophotonic devices: chirality appears naturally ...

atoms & nanofibers

atoms & CQED

quantum dots & photonic nanostructures

Chiral Quantum Optics Nature Review submitted

Peter Lodahl,¹ Sahand Mahmoodian,¹ Søren Stobbe,¹ Philipp Schneeweiss,² Jürgen Volz,² <u>Arno Rauschenbeutel</u>,² Hannes Pichler,^{3,4} and Peter Zoller^{3,4}

NANOPHOTONICS

Chiral nanophotonic waveguide interface based on spin-orbit interaction of light

Jan Petersen, Jürgen Volz,* Arno Rauschenbeutel*

nature nanotechnology

... with quantum dots LETTERS PUBLISHED ONLINE: 27 JULY 2015 | DOI: 10.1038/NNANO.2015.159

Deterministic photon-emitter coupling in chiral photonic circuits

Immo Söllner¹*, Sahand Mahmoodian¹, Sofie Lindskov Hansen¹, Leonardo Midolo¹, Alisa Javadi¹, Gabija Kiršanskė¹, Tommaso Pregnolato¹, Haitham El-Ella¹, Eun Hye Lee², Jin Dong Song², Søren Stobbe¹ and Peter Lodahl¹*

H Pichler T Ramos

B Vermersch

P Hauke

'Chiral' Quantum Optics→ Many-Body Quantum Physics

• Theory ...

- T. Ramos, H. Pichler, A.J. Daley, and PZ, PRL 2014
- K. Stannigel, P. Rabl, and PZ. NJP (2012)
- H. Pichler, T. Ramos, A.J. Daley, PZ, PRA, 2015
- T. Ramos, B. Vermersch, P. Hauke, H. Pichler, and PZ, PRA 2016
- B. Vermersch, T. Ramos, P. Hauke, and PZ, PRA 2016
- H. Pichler and PZ, PRL 2016
- P.O. Guimond, H. Pichler, A. Rauschenbeutel and PZ, arXiv June 2016
- C. Dlaska, B. Vermersch, and PZ, arXiv July 2016

- Review
 - P. Lodahl, A. Rauschenbeutel, PZ et al., submitted to Nature Reviews 2016

'Chiral' Quantum Optics

✓ 'chiral' atom-light interface:

broken left-right symmetry $\gamma_L \neq \gamma_R$

'Chiral' Quantum Optics $|e\rangle$ $|g\rangle$ open fiber boundaries γ_R right-moving photon photons never return / are never reflected carry away entropy ✓ 'chiral' atom-light interface: broken left-right symmetry

 $\gamma_L = 0; \gamma_R$ 'chirality' ~ open quantum system

'Chiral' Photon-Mediated Interactions

✓ 'chiral' interactions
 broken left-right symmetry

atoms only talk to atoms on the right

'Chiral' Interactions ... How to Model?

- interactions mediated by photons
 - quantum optics we know

$$\checkmark \text{ dipole-dipole interaction } H \sim \sigma_1^- \sigma_2^+ + \sigma_1^+ \sigma_2^- \text{ by integrating out photons}$$

- chiral quantum optics

Theory: 'Cascaded Master equation' = open quantum system

Theory

Quantum Optical Master Equation

- We integrate the photons out as 'quantum reservoir' in Born-Markov approximation
- Master equation for reduced dynamics: density operator of atoms

$$\dot{\rho} = -\frac{i}{\hbar} \left[H_{\rm sys}, \rho \right] + \mathcal{L}\rho$$

Theory

1. 'Bidirectional' Master Equation

• Master equation: symmetric

"Dicke" master equation for 1D: D E Chang et al 2012 New J. Phys. 14 063003

Theory

2.'Cascaded' Master Equation

• Master equation: (purely) unidirectional

$$\dot{\rho} = \mathscr{L}\rho \equiv -i(H_{\rm eff}\rho - \rho H_{\rm eff}^{\dagger}) + \sigma\rho\sigma^{\dagger}$$

Lindblad form

non-Hermitian effective Hamiltonian

$$H_{\text{eff}} = H_1 + H_2 - i\frac{\gamma}{2} \left(\sigma_1^+ \sigma_1^- + \sigma_2^+ \sigma_2^- + 2\sigma_2^+ \sigma_1^-\right)$$

• quantum jump operator: collective

 $\sigma = \sigma_1^- + \sigma_2^-$

- C.W. Gardiner, PRL 1993; H. Carmichael, PRL 1993
- general caseponitatoms, to hata has does not matter H. Pichler et al., PRA 2015

Our Model System: 'Chiral' Many-Body Quantum Optics

- ✓ 'chiral' photon-mediated interactions
- ✓ laser driving
- √open quantum system

Driven-dissipative quantum many-body system

Chiral Photonic Quantum Network

chiral = asymmetric coupling of atoms to wave guide

- open quantum many body system
 - driven-dissipative (quantum optics)

• why?

-quantum info / non-equilibrium cond mat (quantum phases)

how? - physical realization

-photons, spin waves, ...

Many body Quantum Optics

Dynamics: Master equation

Steady state: •

$$\dot{\rho}(t) = -\frac{i}{\hbar} [H_{\rm sys}, \rho(t)] + \mathcal{L}\rho(t)$$

$$\rho(t) \xrightarrow{t \to \infty} \rho_{ss}$$

validity ...

Many body Quantum Optics

• Dynamics: Master equation

$$\dot{\rho}(t) = -\frac{i}{\hbar} [H_{\rm sys}, \rho(t)] + \mathcal{L}\rho(t)$$

validity ...

• Steady state:

$$\rho(t) \xrightarrow{t \to \infty} \rho_{ss} \stackrel{!}{=} |\Psi\rangle \langle \Psi|$$

pure & (interesting) entangled state (dark state of dissipative dynamics)

Dark States: Single Particle

• optical pumping

$$\frac{\rho(t) \xrightarrow{t \to \infty} |g_{+1}\rangle \langle g_{+1}|}{\swarrow}$$

pumping into a pure "dark state"

• Optical Bloch Equations

• steady state as a pure "dark state"

 $H|D\rangle = E|D\rangle$ $\forall \alpha \quad c_{\alpha}|D\rangle = 0$ conditions

$$\rho(t) \xrightarrow{t \to \infty} |D\rangle \langle D|$$

pumping into a pure state

Dark States: Many Particle

qubits or particles on a lattice

master equation

• desired state as "dark state"

$$H|D\rangle = E|D\rangle$$

$$\forall \alpha \quad c_{\alpha}|D\rangle = 0$$

$$construct a parent$$
Liouvillian

$$\rho(t) \xrightarrow{t \to \infty} |D\rangle \langle D|$$

Kraus et al., PRA 2008 25

Examples: Engineered Dissipative Atomic Systems

Topology via dissipation

Majorana edge modes S. Diehl et al., Nature Phys. 2012; PRL 2013 J. Budich et al., preprint

Diss. Quantum Phase transitions

BCS-pairing from dissipation

d-wave pairing

S. Diehl et al., PRL 2010

Entangled States from Dissipation

Exp. ions: Blatt et al., Nature '11; Nat Phys '13 Exp. neutral atoms: DeMarco, Oberthaler, ... [Polzik et al., PRL '11] Dynamics of spins coupled to a chiral waveguide

Special case:

 Distance commensurate with photon wavelength

$$kd = 2\pi\mathbb{Z}$$

 Equal Rabi frequencies and staggered detunings

$$\Omega_i = \Omega$$
$$\delta_i = -\delta_{i+1}$$

For $\delta_i = 0, \ \gamma_L = \gamma_R \longrightarrow$ Purely dissipative Dicke model

Two-Level Atoms with 'Chiral' Waveguide Coupling

- Unique, pure steady state: $\rho(t) \xrightarrow{t \to \infty} |\Psi\rangle \langle \Psi|.$
- Quantum Dimers

$$\begin{split} |\Psi\rangle &= \bigotimes_{i=1}^{N} |D\rangle_{2i-1,2i} & \text{product of pure quantum} \\ |D\rangle &= \frac{1}{\sqrt{1+|\alpha|^2}} \Big[|gg\rangle + \frac{\alpha}{\sqrt{2}} \left(|ge\rangle - |eg\rangle \right) \Big] \\ & \text{singlet / EPR} & \alpha = \frac{\sqrt{2}\Omega}{\delta - i(\gamma_R - \gamma_L)/2} \\ & \text{singlet fraction} \end{split}$$

• Note: only for *N* even Entanglement by Dissipation

$$\gamma_L = 0$$

• Iterative solution from left to right:

N spins? Consider **cascaded** case first

Iterative solution from left to right:

$$\gamma_L = 0$$

• Iterative solution from left to right:

quantum interference: no light

• Iterative solution from left to right:

 $\gamma_L = 0$

• Iterative solution from left to right:

constant "purification speed"

$$\gamma_L / \gamma_R = 0$$
$$\Omega / \gamma_R = 0.5$$

N odd: cascaded

 $\gamma_L = 0$

• Iterative solution from left to right:

Last spin cannot pair up, but still dimers are formed

N even: Chiral waveguide

N odd: chiral waveguide

 $\gamma_L \neq \gamma_R$

• Odd number of spins?

• Any unpaired spin destroyed the formed dimers: No dark state!

 $\gamma_L / \gamma_R = 0.4$ $\Omega / \gamma_R = 0.5$

Dynamics of TLS coupled to a chiral waveguide

 $\gamma_L = 0$

• Iterative solution from left to right:

constant "purification speed"

$$\gamma_L / \gamma_R = 0$$
$$\Omega / \gamma_R = 0.5$$

N odd: cascaded

 $\gamma_L = 0$

• Iterative solution from left to right:

Last spin cannot pair up, but still dimers are formed

Other realizations ... and more insight?

'Chiral' Couplings & 'Chiral' Networks with ...

- "photonic" wave-guides
- "phononic"
- spin waves [quantum spintronics]

theory beyond Born-Markov using tDMRG techniques

Chirality / Photonic Nanostructures

 \checkmark quantum optics with spins

Chirality / Photonic Nanostructures

theory beyond Born-Markov: tDMRG techniques for spin chains

'Chiral' Quantum Optics with Spin Waveguides

T. Ramos, B. Vermersch, P. Hauke, H. Pichler, and PZ, PRA 2016, *Non-Markovian Chiral Networks*B. Vermersch, T. Ramos, P. Hauke, and PZ, PRA 2016, *Implementation with Rydberg Atoms and Ion Strings*

'Chiral' Couplings with Spin Chains

• spin waveguide

'Chiral' exponential decay into the spin waveguide

Dimer formation: system + reservoir dynamics

Dimer formation: system + reservoir dynamics

tDMRG + quantum trajectories

- Larger reservoirs: tDMRG $\psi_{i_1,\ldots,i_N} = \operatorname{tr}\{A[1]^{i_1}A[2]^{i_2}\cdots A[N]^{i_N}\}$
- $|\psi(t+dt)\rangle \sim \begin{cases} e^{-\frac{i}{\hbar}H_{\rm eff}dt}|\psi(t)\rangle & \text{no jump} \\ c|\psi(t)\rangle & \text{jump} \end{cases}$ • Sink: wave function trajectories ×10⁻³ 9 8 3 single trajectory 2 $J_{SR}/J = 0.2;$ $\Omega/J = 0.04;$ 10 sink sink

Hannes Pichler

'Wiring Up' Quantum Modules: 'Chiral' Quantum Circuits with Photons & Spins

'Wiring Up' Quantum Modules: 'Chiral' Quantum Circuits with Photons & Spins

Quantum State Transfer in a Spin Chain

 $\left(\alpha\left|0\right\rangle_{i}+\beta\left|1\right\rangle_{i}\right)\left|0\right\rangle_{j}\longrightarrow\left|0\right\rangle_{i}\left(\alpha\left|0\right\rangle_{j}+\beta\left|1\right\rangle_{j}\right)$

Quantum State Transfer in a 140 site Spin Chain

(cascaded,no sink)

Wiring up quantum-gadgets

Time Reversal of a Wave Packet

Time Reversal + Quantum Switch

Photonic Circuits: Quantum Feedback with Delays

• Model 1: two driven atoms with a delay line

Model 2: driven atom in front of mirror = quantum feedback

We use tDMRG techniques to solve for the dynamics.

H. Pichler, P.Z., PRL 2016 AL Grimsmo, PRL Aug 2015

Quantum Stochastic Schrödinger Equation

Simplest example: JI Sart transmission line (RWA)

outpate: For simplicity we can side here only a single here bath. Generalization i many reservoirs represents no conceptual difficulty.

System + bath Hamiltonian

Validity of the Model

stroboscopic map:

$$\begin{split} |\Psi(t_{n+1})\rangle &= U_n |\Psi(t_n)\rangle \\ U_n &= \exp\left(-\frac{i}{\hbar}H_{\rm sys}\Delta t + \sqrt{\gamma}(\Delta B_n^{\dagger}\sigma_- - \sigma_+\Delta B_n)\right) \\ \text{(quantum) Ito increment} \\ \Delta B_n &= \int_{t_n}^{t_n + \Delta t} dt \, b(t) \qquad \left[\frac{\Delta B_n}{\sqrt{\Delta t}}, \frac{\Delta B_m^{\dagger}}{\sqrt{\Delta t}}\right] = \delta_{n,m} \end{split}$$

Matrix Product State Representation

We will use MPS to solve the Quantum Stochastic Schrödinger Equation.

G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).

J. Daley, C. Kollath, U. Schollwöck, G. Vidal, J. Stat. Mech. (2004) P04005.

S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004)

Conclusions

• Chiral Quantum Optics & Quantum Many-Body Physics

dissipative formation of *pure quantum dimers*

- Physical realization with atoms / solid state emitters + photons, spins, ...
- **Theory:** dynamics of chiral quantum networks with t-DMRG techniques / beyond Markov approximation
- 2D?